如何在企业级同时实施知识图谱 (KG) 和大型语言模型 (LLM)
大型语言模型(LLM)和知识图谱(KG)是让更多人访问数据的不同方法。知识图谱使用语义学将数据集通过其含义(即它们所代表的实体)连接起来。LLM 使用向量和深度神经网络来预测自然语言。它们通常都以 "解锁 "数据为目标。对于实施 KGs 的企业来说,最终目标通常是建立数据市场、语义层、使数据 FAIR 化或使企业更加以数据为中心。这些都是不同的解决方案,但最终目标是相同的:让更多数据更快地提供给合适的人。对于实施 LLM 或其他类似 GenAI 解决方案的企业来说,其目标往往是相似的:为员工或客户提供一个 "数字助理",以便更快地将正确的信息提供给正确的人。这种潜在的共生关系是显而易见的:LLM 的一些主要弱点,即它们是黑盒模型,难以处理事实知识,而这正是 KG 的一些最大优势。从本质上讲,KG 是事实的集合,而且完全可以解释。但是,在企业中,KGs 和 LLMs 究竟应该如何结合使用呢?